Part II

OVERVIEW OF INDUSTRIAL MPC TECHNIQUES
Contents

1 INTRODUCTION TO MODEL PREDICTIVE CONTROL 5

1.1 BACKGROUND FOR MPC DEVELOPMENT 5

1.2 WHAT'S MPC 6

1.3 WHY MPC? 8

1.3.1 SOME EXAMPLES 9

1.3.2 SUMMARY 24

1.4 INDUSTRIAL USE OF MPC: OVERVIEW 25

1.4.1 MOTIVATION 25

1.4.2 SURVEY OF MPC USE 31

1.5 HISTORICAL PERSPECTIVE 32

1.6 CHALLENGES 34

1.6.1 MODELING & IDENTIFICATION 34

1.6.2 INCORPORATION OF STATISTICAL CONCEPTS 41

1.6.3 NONLINEAR CONTROL 48

1.6.4 OTHER ISSUES 49

2 DYNAMIC MATRIX CONTROL 50

2.1 FINITE IMPULSE AND STEP RESPONSE MODEL 50
2.1.1 OVERVIEW OF COMPUTER CONTROL 50
2.1.2 IMPULSE RESPONSE AND IMPULSE RESPONSE MODEL 52
2.1.3 STEP RESPONSE AND STEP RESPONSE MODEL 54
2.2 MULTI-STEP PREDICTION ... 57
 2.2.1 OVERVIEW .. 57
 2.2.2 RECURSIVE MULTI-STEP PREDICTION FOR AN FIR SYSTEM 58
 2.2.3 RECURSIVE MULTI-STEP PREDICTION FOR AN FIR SYSTEM WITH DIFFERENCED INPUT .. 62
 2.2.4 MULTIVARIABLE GENERALIZATION 66
2.3 DYNAMIC MATRIX CONTROL ALGORITHM 67
 2.3.1 MAJOR CONSTITUENTS ... 67
 2.3.2 BASIC PROBLEM SETUP 68
 2.3.3 DEFINITION AND UPDATE OF MEMORY 69
 2.3.4 PREDICTION EQUATION 70
 2.3.5 QUADRATIC CRITERION .. 73
 2.3.6 CONSTRAINTS .. 75
 2.3.7 QUADRATIC PROGRAMMING 79
 2.3.8 SUMMARY OF REAL-TIME IMPLEMENTATION 83
2.4 ADDITIONAL ISSUES ... 84
 2.4.1 FEASIBILITY ISSUE AND CONSTRAINT RELAXATION 84
 2.4.2 GUIDELINES FOR CHOOSING THE HORIZON SIZE 85
 2.4.3 BI-LEVEL FORMULATION 86
 2.4.4 PROPERTY ESTIMATION 89
 2.4.5 SYSTEM DECOMPOSITION 91
3 SYSTEM IDENTIFICATION 107

3.1 DYNAMIC MATRIX IDENTIFICATION 107
 3.1.1 STEP TESTING ... 107
 3.1.2 PULSE TESTING .. 111
 3.1.3 RANDOM INPUT TESTING 112
 3.1.4 DATA PRETREATMENT 118

3.2 BASIC CONCEPTS OF IDENTIFICATION 120

3.3 MODEL DESCRIPTION .. 124
 3.3.1 NONPARAMETRIC MODEL 124
 3.3.2 PARAMETRIC METHOD 125

3.4 EXPERIMENTAL CONDITIONS 128
 3.4.1 SAMPLING INTERVAL 128
 3.4.2 OPEN-LOOP VS. CLOSED-LOOP EXPERIMENTS 129
 3.4.3 INPUT DESIGN .. 130

3.5 IDENTIFICATION METHODS 132
 3.5.1 PREDICTION ERROR METHOD 132
 3.5.2 SUBSPACE IDENTIFICATION 137

3.6 IDENTIFICATION OF A PROCESS WITH STRONG DIRECTIONALITY 138
Chapter 1

INTRODUCTION TO MODEL PREDICTIVE CONTROL

1.1 BACKGROUND FOR MPC DEVELOPMENT

Two main driving forces for a new process control paradigm in the late 70’s ~ early 80’s:

- Energy crisis + global competition + environmental reg.
 \[\downarrow \]
 - process integration
 - reduced design / safety margin
 - real-time optimization
 - tighter quality control
 \[\downarrow \]
 \textit{higher demand on process control.}

- (Remarkable) advances in microprocessor technology.
Industry’s response ⇒ MPC

1.2 WHAT’S MPC

It’s a computer control system.
It's a computer control system consisting of an observer & an optimizer.

The optimization is based on prediction of future behavior of y.

MPC (software packages) is sold under different names:

- DMC (Dynamic Matrix Control, now AspenTech)
- IDCOM (Setpoint, now AspenTech)
- SMCA (Setpoint, now AspenTech)
- RMPCT (Honeywell)
- PCT (Profimatics)
It’s major features are

- model based
- \textit{explicit} prediction of future system behavior
- \textit{explicit} consideration of constraints
- use of on-line mathematical programming
- receding horizon control: repeated computation of open-loop optimal trajectory with feedback update \Rightarrow implicit \textit{feedback} control.

1.3 WHY MPC?

Difficult elements for process control:

- delay, inverse response
- interaction