4.2.5 **CONDITIONAL PROBABILITY DENSITY: SCALAR CASE**

When two random variables are related, the probability density of a random variable changes when the other random variable takes on a particular value.

The probability density of a random variable when one or more other random variables are fixed is called *conditional probability density*.

This concept is important in stochastic estimation as it can be used to develop estimates of unknown variables based on readings of other related variables.

Let x and y be random variables. Suppose x and y have joint probability density $P(\zeta, \beta; x, y)$. One may then ask what the probability density of x is given a particular value of y (say $y = \beta$). Formally, this is called “conditional density function” of x given y and denoted as $P(\zeta|\beta; x|y)$.

$P(\zeta|\beta; x|y)$ is computed as

$$P(\zeta|\beta; x|y) = \lim_{\epsilon \to 0} \frac{\int_{-\epsilon}^{\epsilon} \int_{-\infty}^{\infty} P(\zeta, \beta^*; x, y) d\beta^* d\zeta}{\int_{-\infty}^{\infty} P(\zeta, \beta; x, y) d\zeta}$$

(4.51)

$$= \int_{-\infty}^{\infty} \frac{P(\zeta, \beta; x, y) d\zeta}{P(\beta, y)}$$

(4.52)

$$= \frac{P(\zeta, \beta; x, y)}{P(\beta, y)}$$

(4.53)
Note:

- The above means
\[
\left(\frac{\text{Conditional Density}}{\text{of } x \text{ given } y} \right) = \frac{\text{Joint Density of } x \text{ and } y}{\text{Marginal Density of } y}
\] (4.54)
This should be quite intuitive.

- Due to the normalization,
\[
\int_{-\infty}^{\infty} P(\zeta|\beta; x|y) \, d\zeta = 1 \tag{4.55}
\]
which is what we want for a density function.

- \[P(\zeta|\beta; x|y) = P(\zeta, x) \tag{4.56} \]
if and only if
\[P(\zeta, \beta; x, y) = P(\zeta, x)P(\beta, y) \tag{4.57} \]
This means that the conditional density is same as the marginal density when and only when \(x \) and \(y \) are independent.

We are interested in the conditional density, because often some of the random variables are measured while others are not. For a particular trial, if \(x \) is not measurable, but \(y \) is, we are interested in knowing \(P(\zeta|\beta; x|y) \) for estimation of \(x \).

Finally, note the distinctions among different density functions:
- $\mathcal{P}(\zeta, \beta; x, y)$: Joint Probability Density of x and y
 represents the probability density of $x = \zeta$ and $y = \beta$ simultaneously.

$$\int_{a_2}^{b_2} \int_{a_1}^{b_1} \mathcal{P}(\zeta, \beta; x, y)d\zeta d\beta = \Pr\{a_1 < x \leq b_1 \text{ and } a_2 < y \leq b_2\} \quad (4.58)$$

- $\mathcal{P}(\zeta; x)$: Marginal Probability Density of x
 represents the probability density of $x = \zeta$ NOT knowing what y is.

$$\mathcal{P}(\zeta, x) = \int_{-\infty}^{\infty} \mathcal{P}(\zeta, \beta; x, y)d\beta \quad (4.59)$$

- $\mathcal{P}(\beta; y)$: Marginal Probability Density of y
 represents the probability density of $y = \beta$ NOT knowing what x is.

$$\mathcal{P}(\beta, y) = \int_{-\infty}^{\infty} \mathcal{P}(\zeta, \beta; x, y)d\zeta \quad (4.60)$$

- $\mathcal{P}(\zeta|\beta; x|y)$: Conditional Probability Density of x given y
 represents the probability density of x when $y = \beta$.

$$\mathcal{P}(\zeta|\beta; x|y) = \frac{\mathcal{P}(\zeta, \beta; x, y)}{\mathcal{P}(\beta, y)} \quad (4.61)$$

- $\mathcal{P}(\beta|\zeta; y|x)$: Conditional Probability Density of y given x
 represents the probability density of y when $x = \zeta$.

$$\mathcal{P}(\beta|\zeta; y|x) = \frac{\mathcal{P}(\zeta, \beta; x, y)}{\mathcal{P}(\zeta, x)} \quad (4.62)$$

Baye’s Rule:

Note that

$$\mathcal{P}(\zeta|\beta; x|y) = \frac{\mathcal{P}(\zeta, \beta; x, y)}{\mathcal{P}(\beta, y)} \quad (4.63)$$

$$\mathcal{P}(\beta|\zeta; y|x) = \frac{\mathcal{P}(\zeta, \beta; x, y)}{\mathcal{P}(\zeta, x)} \quad (4.64)$$
Hence, we arrive at
\[
P(\zeta|\beta; x|y) = \frac{P(\beta|\zeta; y|x)P(\zeta, x)}{P(\beta, y)}
\]
(4.65)

The above is known as the Baye’s Rule. It essentially says
\[
\begin{align*}
\text{(Cond. Prob. of } x \text{ given } y) & \times \text{(Marg. Prob. of } y) \\
= \text{(Cond. Prob. of } y \text{ given } x) & \times \text{(Marg. Prob. of } x)
\end{align*}
\]
(4.66)
(4.67)

Baye’s Rule is useful, since in many cases, we are trying to compute
\(P(\zeta|\beta; x|y)\) and it’s difficult to obtain the expression for it directly, while it
may be easy to write down the expression for \(P(\beta|\zeta; y|x)\).

We can define the concepts of conditional expectation and conditional
covariance using the conditional density. For instance, the conditional
expectation of \(x\) given \(y = \beta\) is defined as
\[
E\{x|y\} \overset{\Delta}{=} \int_{-\infty}^{\infty} \zeta P(\zeta|\beta; x|y) d\zeta
\]
(4.68)

Conditional variance can be defined as
\[
\text{Var}\{x|y\} \overset{\Delta}{=} E\{(\zeta - E\{x|y\})^2\}
\]
(4.69)
\[
= \int_{-\infty}^{\infty} (\zeta - E\{x|y\})^2 P(\zeta|\beta; x|y) d\zeta
\]
(4.70)

Example: Jointly Normally Distributed or Gaussian Variables

Suppose that \(x\) and \(y\) have the following joint normal densities
parametrized by \(m_1, m_2, \sigma_1, \sigma_2, \rho:\)
\[
P(\zeta, \beta; x, y) = \frac{1}{2\pi \sigma_x \sigma_y (1 - \rho^2)^{1/2}}
\]
\[
\times \exp \left\{ -\frac{1}{2(1 - \rho^2)} \left[\left(\frac{\zeta - \bar{x}}{\sigma_x} \right)^2 - 2 \rho \left(\frac{\zeta - \bar{x}}{\sigma_x} \right) \left(\frac{\beta - \bar{y}}{\sigma_y} \right) + \left(\frac{\beta - \bar{y}}{\sigma_y} \right)^2 \right] \right\}
\]
(4.71)
Some algebra yields

$$
\mathcal{P}(\zeta, \beta; x, y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} \exp \left\{ -\frac{1}{2} \left(\frac{\beta - \bar{y}}{\sigma_y} \right)^2 \right\}
$$

marginal density of y

$$
\times \frac{1}{\sqrt{2\pi\sigma_x^2(1 - \rho^2)}} \exp \left\{ -\frac{1}{2} \left(\frac{\zeta - \bar{x} - \rho\frac{\sigma_x}{\sigma_y}(\beta - \bar{y})}{\sigma_x\sqrt{1 - \rho^2}} \right)^2 \right\}
$$

conditional density of x

$$
= \frac{1}{\sqrt{2\pi\sigma_x^2}} \exp \left\{ -\frac{1}{2} \left(\frac{\zeta - \bar{x}}{\sigma_x} \right)^2 \right\}
$$

marginal density of x

$$
\times \frac{1}{\sqrt{2\pi\sigma_y^2(1 - \rho^2)}} \exp \left\{ -\frac{1}{2} \left(\frac{\beta - \bar{y} - \rho\frac{\sigma_x}{\sigma_y}(\zeta - \bar{x})}{\sigma_y\sqrt{1 - \rho^2}} \right)^2 \right\}
$$

conditional density of y

Hence,

$$
\mathcal{P}(\zeta | \beta; x | y) = \frac{1}{\sqrt{2\pi\sigma_x^2(1 - \rho^2)}} \exp \left\{ -\frac{1}{2} \left(\frac{\zeta - \bar{x} - \rho\frac{\sigma_x}{\sigma_y}(\beta - \bar{y})}{\sigma_x\sqrt{1 - \rho^2}} \right)^2 \right\}
$$

(4.74)

$$
\mathcal{P}(\beta | \zeta; y | x) = \frac{1}{\sqrt{2\pi\sigma_y^2(1 - \rho^2)}} \exp \left\{ -\frac{1}{2} \left(\frac{\beta - \bar{y} - \rho\frac{\sigma_x}{\sigma_y}(\zeta - \bar{x})}{\sigma_y\sqrt{1 - \rho^2}} \right)^2 \right\}
$$

(4.75)

Note that the above conditional densities are normal. For instance, $\mathcal{P}(\zeta | \beta; x | y)$ is a normal density with mean of $\bar{x} + \rho\frac{\sigma_x}{\sigma_y}(\beta - \bar{y})$ and variance of $\sigma_x^2(1 - \rho^2)$. So,

$$
E\{x | y\} = \bar{x} + \frac{\rho \sigma_x}{\sigma_y}(\beta - \bar{y})
$$

(4.76)

$$
= \bar{x} + \frac{\rho \sigma_x \sigma_y}{\sigma_y^2}(\beta - \bar{y})
$$

(4.77)

$$
= E\{x\} + \text{Cov}\{x, y\} \text{Var}^{-1}\{y\} (\beta - \bar{y})
$$

(4.78)
Conditional covariance of x given $y = \beta$ is:

$$E\{(x - E\{x|y\})^2|y\} = \sigma_x^2(1 - \rho^2)$$ \hspace{1cm} (4.79)

$$= \sigma_x^2 - \frac{\sigma_x^2 \sigma_y^2 \rho^2}{\sigma_y^2}$$ \hspace{1cm} (4.80)

$$= \sigma_x^2 - (\sigma_x \sigma_y \rho) \frac{1}{\sigma_y^2} (\sigma_x \sigma_y \rho)$$ \hspace{1cm} (4.81)

$$= \text{Var}\{x\} - \text{Cov}\{x, y\}\text{Var}^{-1}\{y\}\text{Cov}\{y, x\}$$ \hspace{1cm} (4.82)

Notice that the conditional distribution becomes a point density as $\rho \to 1$, which should be intuitively obvious.

4.2.6 CONDITIONAL PROBABILITY DENSITY: VECTOR CASE

We can extend the concept of conditional probability distribution to the vector case similarly as before.

Let x and y be n and m dimensional random vectors respectively. Then, the conditional density of x given $y = [\beta_1, \ldots, \beta_m]^T$ is defined as

$$P(\zeta_1, \ldots, \zeta_n|\beta_1, \ldots, \beta_m; x_1, \ldots, x_n|y_1, \ldots, y_m) = \frac{P(\zeta_1, \ldots, \zeta_n, \beta_1, \ldots, \beta_m; x_1, \ldots, x_n, y_1, \ldots, y_m)}{P(\beta_1, \ldots, \beta_m; y_1, \ldots, y_m)}$$ \hspace{1cm} (4.83)

Bayes’s Rule can be stated as

$$P(\zeta_1, \ldots, \zeta_n|\beta_1, \ldots, \beta_m; x_1, \ldots, x_n|y_1, \ldots, y_m) = \frac{P(\beta_1, \ldots, \beta_m|\zeta_1, \ldots, \zeta_n, y_1, \ldots, y_m, x_1, \ldots, x_n)P(\zeta_1, \ldots, \zeta_n; x_1, \ldots, x_n)}{P(\beta_1, \ldots, \beta_m; y_1, \ldots, y_m)}$$ \hspace{1cm} (4.84)
The conditional expectation and covariance matrix can be defined similarly:

\[
E\{x|y\} = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \begin{bmatrix} \zeta_1 \\ \vdots \\ \zeta_n \end{bmatrix} \mathcal{P}(\zeta|\beta; x|y) \; d\zeta_1, \ldots, d\zeta_n
\]

(4.85)

\[
\text{Cov}\{x|y\} = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \begin{bmatrix} \zeta_1 - E\{x_1|y\} \\ \vdots \\ \zeta_n - E\{x_n|y\} \end{bmatrix} \begin{bmatrix} \zeta_1 - E\{x_1|y\} \\ \vdots \\ \zeta_n - E\{x_n|y\} \end{bmatrix}^T \mathcal{P}(\zeta|\beta; x|y) \; d\zeta_1, \ldots, d\zeta_n
\]

(4.86)

Example: Gaussian or Jointly Normally Distributed Variables

Let \(x \) and \(y \) be jointly normally distributed random variable vectors of dimension \(n \) and \(m \) respectively. Let

\[
z = \begin{bmatrix} x \\ y \end{bmatrix}
\]

(4.87)

The joint distribution takes the form of

\[
\mathcal{P}(\zeta, \beta; x, y) = \frac{1}{(2\pi)^{\frac{n+m}{2}}|P_z|^{1/2}} \exp \left\{ -\frac{1}{2} (\eta - \bar{z})^T P_z^{-1} (\eta - \bar{z}) \right\}
\]

(4.88)

where

\[
\bar{z} = \begin{bmatrix} \bar{x} \\ \bar{y} \end{bmatrix}; \quad \eta = \begin{bmatrix} \zeta \\ \beta \end{bmatrix}
\]

(4.89)

\[
P_z = \begin{bmatrix} \text{Cov}(x) & \text{Cov}(x, y) \\ \text{Cov}(y, x) & \text{Cov}(y) \end{bmatrix}
\]

(4.90)

Then, it can be proven that (see Theorem 2.13 in [Jaz70])

\[
E\{x|y\} = \bar{x} + \text{Cov}(x, y)\text{Cov}^{-1}(y)(\beta - \bar{y})
\]

(4.91)

\[
E\{y|x\} = \bar{y} + \text{Cov}(y, x)\text{Cov}^{-1}(x)(\zeta - \bar{x})
\]

(4.92)
and

\[
\text{Cov}\{y|x\} \triangleq E \left\{ (\beta - E\{y|x\}) (\beta - E\{y|x\})^T \right\} \quad (4.95)
\]

\[
= \text{Cov}\{y\} - \text{Cov}\{y, x\} \text{Cov}^{-1}\{x\} \text{Cov}\{x, y\} \quad (4.96)
\]

4.3 Statistics

4.3.1 Prediction

The first problem of statistics is prediction of the outcome of a future trial given a probabilistic model.

Suppose \(P(x)\), the probability density for random variable \(x\), is given. Predict the outcome of \(x\) for a new trial (which is about to occur).

Note that, unless \(P(x)\) is a point distribution, \(x\) cannot be predicted exactly.

To do optimal estimation, one must first establish a formal criterion. For example, the most likely value of \(x\) is the one that corresponds to the highest density value:

\[
\hat{x} = \arg \max_x P(x)
\]

A more commonly used criterion is the following minimum variance estimate:

\[
\hat{x} = \arg \min_x E\{\|x - \hat{x}\|_2^2\}
\]

The solution to the above is \(\hat{x} = E\{x\}\).

Exercise: Can you prove the above?
If a related variable y (from the same trial) is given, then one should use $\hat{x} = E\{x|y\}$ instead.

4.3.2 Sample Mean and Covariance, Probabilistic Model

The other problem of statistics is inferring a probabilistic model from collected data. The simplest of such problems is the following:

We are given the data for random variable x from N trials. These data are labeled as $x(1), \ldots, x(N)$. Find the probability density function for x.

Often times, a certain density shape (like normal distribution) is assumed to make it a well-posed problem. If a normal density is assumed, the following sample averages can then be used as estimates for the mean and covariance:

$$\hat{x} = \frac{1}{N} \sum_{i=1}^{N} x(i)$$

$$\hat{R}_x = \frac{1}{N} \sum_{i=1}^{N} x(i)x^T(i)$$

Note that the above estimates are consistent estimates of real mean and covariance \bar{x} and R_x (i.e., they converge to true values as $N \to \infty$).

A slightly more general problem is:

A random variable vector y is produced according to

$$y = f(\theta, u) + x$$

In the above, x is another random variable vector, u is a known deterministic vector (which can change from trial to trial) and θ is
an unknown deterministic vector (which is invariant). Given data for y from N trials, find the probability density parameters for x (e.g., \bar{x}, R_x) and the unknown deterministic vector θ.

This problem will be discussed later in the regression section.